lunes, 20 de mayo de 2013
domingo, 19 de mayo de 2013
Unidades opticas de lectura y escritura de datos
Unidades ópticas de lectura y escritura de datos
Unidad óptico lectura
En informática, una unidad de disco óptico es una unidad de disco que usa una luz láser u ondas electromagnéticas cercanas al espectro de la luz como parte del proceso de lectura o escritura de datos desde un archivo a discos ópticos. Algunas unidades solo pueden leer discos, pero las unidades más recientes usualmente son tanto lectoras como grabadoras. Para referirse a las unidades con ambas capacidades se suele usar el término lectograbadora. Los discos compactos (CD), DVD, y Blu-ray Disc son los tipos de medios ópticos más comunes que pueden ser leídos y grabados por estas unidades.
Las unidades de discos ópticos son una parte integrante de los aparatos de consumo autónomos como los reproductores de CD, reproductores de DVD y grabadoras de DVD. También son usados muy comúnmente en las computadoras para leer software y medios de consumo distribuidos en formato de disco, y para grabar discos para el intercambio y archivo de datos. Las unidades de discos ópticos (junto a las memorias flash) han desplazado a las disqueteras y a las unidades de cintas magnéticas para este propósito debido al bajo coste de los medios ópticos y la casi ubicuidad de las unidades de discos ópticos en las computadoras y en hardware de entretenimiento de consumo.
La grabación de discos en general es restringida a la distribución y copiado de seguridad a pequeña escala, siendo más lenta y más cara en términos materiales por unidad que el proceso de moldeo usado para fabricar discos planchados en masa.
unidades de lectura y escritura
CD planchado | CD-R | CD-RW | DVD planchado | DVD-R | DVD+R | DVD-RW | DVD+RW | DVD+R DL | BD planchado | BD-R | BD-RE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Reproductor Audio CD | Lectura | Lectura[N. 1] | Lectura[N. 2] | Ninguno | Ninguno | Ninguno | Ninguno | Ninguno | Ninguno | Ninguno | Ninguno | Ninguno |
Unidad de CD-ROM | Lectura | Lectura[N. 1] | Lectura[N. 2] | Ninguno | Ninguno | Ninguno | Ninguno | Ninguno | Ninguno | Ninguno | Ninguno | Ninguno |
Grabadora de CD-R | Lectura | Escritura | Lectura | Ninguno | Ninguno | Ninguno | Ninguno | Ninguno | Ninguno | Ninguno | Ninguno | Ninguno |
Grabadora de CD-RW | Lectura | Escritura | Escritura | Ninguno | Ninguno | Ninguno | Ninguno | Ninguno | Ninguno | Ninguno | Ninguno | Ninguno |
Unidad de DVD-ROM | Lectura | Lectura[N. 3] | Lectura[N. 3] | Lectura | Lectura[N. 4] | Lectura[N. 4] | Lectura[N. 4] | Lectura[N. 4] | Lectura[N. 5] | Ninguno | Ninguno | Ninguno |
Grabadora de DVD-R | Lectura | Escritura | Escritura | Lectura | Escritura | Lectura[N. 6] | Lectura[N. 7] | Lectura[N. 6] | Lectura[N. 5] | Ninguno | Ninguno | Ninguno |
Grabadora de DVD-RW | Lectura | Escritura | Escritura | Lectura | Escritura | Lectura[N. 7] | Escritura[N. 8] | Lectura[N. 6] | Lectura[N. 5] | Ninguno | Ninguno | Ninguno |
Grabadora de DVD+R | Lectura | Escritura | Escritura | Lectura | Lectura[N. 6] | Escritura | Lectura[N. 6] | Lectura[N. 9] | Lectura[N. 5] | Ninguno | Ninguno | Ninguno |
Grabadora de DVD+RW | Lectura | Escritura | Escritura | Lectura | Lectura[N. 6] | Escritura | Lectura[N. 6] | Escritura | Lectura[N. 5] | Ninguno | Ninguno | Ninguno |
Grabadora de DVD±RW | Lectura | Escritura | Escritura | Lectura | Escritura | Escritura | Escritura | Escritura | Lectura[N. 5] | Ninguno | Ninguno | Ninguno |
Grabadora de DVD±RW / DVD+R DL | Lectura | Escritura | Escritura | Lectura | Escritura[N. 10] | Escritura | Escritura[N. 10] | Escritura | Escritura | Ninguno | Ninguno | Ninguno |
Unidad de BD-ROM | Lectura | Lectura | Lectura | Lectura | Lectura | Lectura | Lectura | Lectura | Lectura | Lectura | Lectura | Lectura |
Grabadora de BD-R | Lectura[N. 11] | Escritura[N. 11] | Escritura[N. 11] | Lectura | Escritura | Escritura | Escritura | Escritura | Escritura | Lectura | Escritura | Lectura |
Grabadora de BD-RE | Lectura[N. 11] | Escritura[N. 11] | Escritura[N. 11] | Lectura | Escritura | Escritura | Escritura | Escritura | Escritura | Lectura | Escritura | lectura |
Unidades de almacenamiento internas y externas
Unidades de almacenamiento internas y externas
Dispositivos de almacenamiento interno y externo.
Estos dispositivos podrían ser denominados dispositivos de entrada/salida, ya que permiten al usuario no solo el hecho de guardar la información que deseamos sino que también nos permite tener acceso a la información que ya tenía el dispositivo, los dispositivos de almacenamiento son caracterizados por ser los encargados de guardar nuestra información mientras hacemos uso de la computadora, pero hay dos tipos de dispositivos de almacenamiento: los dispositivos de almacenamiento interno y los dispositivos de almacenamiento externo.
En cada categoría los dispositivos tienen ciertos usos específicos y en algunos casos múltiples, a continuación veremos los usos de cada dispositivo.
Dispositivos de almacenamiento interno: son los encargados de asegurar la información en la CPU de nuestro computador, aunque tienen un número limitado estos dispositivos son de vital importancia para el correcto funcionamiento de nuestro equipo, los dispositivos de almacenamiento interno y sus funciones son:
Disco duro: es considerado el cerebro del computador ya que en él es donde se guardan los datos a largo plazo para que los usuarios puedan acceder a ellos en cuanto sean necesarios, usualmente su capacidad para almacenamiento de información es bastante elevada.
Memoria ROM: esta es una memoria con la función específica de guardar los datos de fábrica que trae nuestro computador.
Memoria RAM: esta memoria tiene como función la conservación de información de corto plazo de nuestro computador.
Las unidades de almacenamiento son aquellos dispositivos, ya sea internos o externos, donde se guardan físicamente los archivos de un sistema.
UNIDADES EXTERNAS
Los discos duros tienen una gran capacidad, pero al estar alojados normalmente dentro de la carcasa, no son transportables. Para intercambiar información con otros equipos (si no están conectados en red) necesitamos utilizar unidades de disco, como los populares disquetes, los CD-ROM o DVD-ROM, los discos magneto-ópticos, etc.
Unidad de 3,5 pulgadas
Unidad de 3,5 pulgadas
Disquete
La unidad de 3,5 pulgadas permite intercambiar información utilizando disquetes magnéticos de 1,44 MB de capacidad. Aunque la capacidad de soporte es muy limitada si tenemos en cuenta las necesidades de las aplicaciones actuales se siguen utilizando para intercambiar archivos pequeños, pues pueden borrarse y reescribirse cuantas veces se desee de una manera muy cómoda, aunque la transferencia de información es bastante lenta si la comparamos con otros soportes, como el disco duro o un CD-ROM.
Para usar el disquete basta con introducirlo en la ranura de la disquetera. Para expulsarlo se pulsa el botón situado junto a la ranura, o bien se ejecuta alguna acción en el entorno gráfico con el que trabajamos (por ejemplo, se arrastra el símbolo del disquete hasta un icono representado por una papelera).
La unidad de disco se alimenta mediante cables a partir de la fuente de alimentación del sistema. Y también va conectada mediante un cable a la placa base. Un diodo LED se ilumina junto a la ranura cuando la unidad está leyendo el disco, como ocurre en el caso del disco duro.
En los disquetes solo se puede escribir cuando la pestaña esta cerrada.
ATENCION: Los Disquetes son muy inseguros e inestables, por lo tanto están en extinción.
La unidad de 3,5 pulgadas permite intercambiar información utilizando disquetes magnéticos de 1,44 MB de capacidad. Aunque la capacidad de soporte es muy limitada si tenemos en cuenta las necesidades de las aplicaciones actuales se siguen utilizando para intercambiar archivos pequeños, pues pueden borrarse y reescribirse cuantas veces se desee de una manera muy cómoda, aunque la transferencia de información es bastante lenta si la comparamos con otros soportes, como el disco duro o un CD-ROM.
Para usar el disquete basta con introducirlo en la ranura de la disquetera. Para expulsarlo se pulsa el botón situado junto a la ranura, o bien se ejecuta alguna acción en el entorno gráfico con el que trabajamos (por ejemplo, se arrastra el símbolo del disquete hasta un icono representado por una papelera).
La unidad de disco se alimenta mediante cables a partir de la fuente de alimentación del sistema. Y también va conectada mediante un cable a la placa base. Un diodo LED se ilumina junto a la ranura cuando la unidad está leyendo el disco, como ocurre en el caso del disco duro.
En los disquetes solo se puede escribir cuando la pestaña esta cerrada.
ATENCION: Los Disquetes son muy inseguros e inestables, por lo tanto están en extinción.
Unidad de CD-ROM
La unidad de CD-ROM permite utilizar discos ópticos de una mayor capacidad que los disquetes de 3,5 pulgadas hasta 700 MB. Ésta es su principal ventaja, pues los CD-ROM se han convertido en el estándar para distribuir sistemas operativos, aplicaciones, etc.
El uso de estas unidades está muy extendido, ya que también permiten leer los discos compactos de audio.
Para introducir un disco, en la mayoría de las unidades hay que pulsar un botón para que salga una especie de bandeja donde se deposita el CD-ROM. Pulsando nuevamente el botón, la bandeja se introduce.
En estas unidades, además, existe una toma para auriculares, y también pueder estar presentes los controles de navegación y de volumen típicos de los equipos de audio para saltar de una pista a otra, por ejemplo.
Una característica básica de las unidades de CD-ROM es la velocidad de lectura que normalmente se expresa como un número seguido de una «x» (40x, 52x,..). Este número indica la velocidad de lectura en múltiplos de 128 kB/s. Así, una unidad de 52x lee información de 128 kB/s × 52 = 6,656 kB/s, es decir, a 6,5 MB/s.
Unidad de CD-RW (Regrabadora)
Las unidades de CD-ROM son sólo de lectura. Es decir, pueden leer la información en un disco, pero no pueden escribir datos en él.
Una regrabadora (CD-RW) puede grabar y regrabar discos compactos. Las características básicas de estas unidades son la velocidad de lectura, de grabación y de regrabación. En discos regrabables es normalmente menor que en los discos grabables una sola vez. Las regrabadoras que trabajan a 8X, 16X, 20X, 24X, etc., permiten grabar los 650, 700 MB o más tamaño (hasta 900 MB) de un disco compacto en unos pocos minutos. Es habitual observar tres datos de velocidad, según la expresión ax bx cx (a:velocidad de lectura; b: velocidad de grabación; c: velocidad de regrabación).
La unidad de CD-ROM permite utilizar discos ópticos de una mayor capacidad que los disquetes de 3,5 pulgadas hasta 700 MB. Ésta es su principal ventaja, pues los CD-ROM se han convertido en el estándar para distribuir sistemas operativos, aplicaciones, etc.
El uso de estas unidades está muy extendido, ya que también permiten leer los discos compactos de audio.
Para introducir un disco, en la mayoría de las unidades hay que pulsar un botón para que salga una especie de bandeja donde se deposita el CD-ROM. Pulsando nuevamente el botón, la bandeja se introduce.
En estas unidades, además, existe una toma para auriculares, y también pueder estar presentes los controles de navegación y de volumen típicos de los equipos de audio para saltar de una pista a otra, por ejemplo.
Una característica básica de las unidades de CD-ROM es la velocidad de lectura que normalmente se expresa como un número seguido de una «x» (40x, 52x,..). Este número indica la velocidad de lectura en múltiplos de 128 kB/s. Así, una unidad de 52x lee información de 128 kB/s × 52 = 6,656 kB/s, es decir, a 6,5 MB/s.
Unidad de CD-RW (Regrabadora)
Las unidades de CD-ROM son sólo de lectura. Es decir, pueden leer la información en un disco, pero no pueden escribir datos en él.
Una regrabadora (CD-RW) puede grabar y regrabar discos compactos. Las características básicas de estas unidades son la velocidad de lectura, de grabación y de regrabación. En discos regrabables es normalmente menor que en los discos grabables una sola vez. Las regrabadoras que trabajan a 8X, 16X, 20X, 24X, etc., permiten grabar los 650, 700 MB o más tamaño (hasta 900 MB) de un disco compacto en unos pocos minutos. Es habitual observar tres datos de velocidad, según la expresión ax bx cx (a:velocidad de lectura; b: velocidad de grabación; c: velocidad de regrabación).
Unidad de DVD-ROM
Las unidades de DVD-ROM son aparentemente iguales que las de CD-ROM, pueden leer tanto discos DVD-ROM como CD-ROM. Se diferencian de las unidades lectoras de CD-ROM en que el soporte empleado tiene hasta 17 GB de capacidad, y en la velocidad de lectura de los datos. La velocidad se expresa con otro número de la «x»: 12x, 16x... Pero ahora la x hace referencia a 1,32 MB/s. Así: 16x = 21,12 MB/s.
Las conexiones de una unidad de DVD-ROM son similares a las de la unidad de CD-ROM: placa base, fuente de alimentación y tarjeta de sonido. La diferencia más destacable es que las unidades lectoras de discos DVD-ROM también pueden disponer de una salida de audio digital. Gracias a esta conexión es posible leer películas en formato DVD y escuchar seis canales de audio separados si disponemos de una buena tarjeta de sonido y un juego de altavoces apropiado (subwoofer más cinco satélites).
Las unidades de DVD-ROM son aparentemente iguales que las de CD-ROM, pueden leer tanto discos DVD-ROM como CD-ROM. Se diferencian de las unidades lectoras de CD-ROM en que el soporte empleado tiene hasta 17 GB de capacidad, y en la velocidad de lectura de los datos. La velocidad se expresa con otro número de la «x»: 12x, 16x... Pero ahora la x hace referencia a 1,32 MB/s. Así: 16x = 21,12 MB/s.
Las conexiones de una unidad de DVD-ROM son similares a las de la unidad de CD-ROM: placa base, fuente de alimentación y tarjeta de sonido. La diferencia más destacable es que las unidades lectoras de discos DVD-ROM también pueden disponer de una salida de audio digital. Gracias a esta conexión es posible leer películas en formato DVD y escuchar seis canales de audio separados si disponemos de una buena tarjeta de sonido y un juego de altavoces apropiado (subwoofer más cinco satélites).
Unidad de DVD-RW
Puede leer y grabar imágenes, sonido y datos en discos de varios gigabytes de capacidad, de una capacidad de 650 MB a 9 GB.
Puede leer y grabar imágenes, sonido y datos en discos de varios gigabytes de capacidad, de una capacidad de 650 MB a 9 GB.
Memoria USB, pendrive o USB flash drive
Es un pequeño dispositivo de almacenamiento que utiliza memoria flash para guardar la información que puede requerir o no baterías (pilas), en los ultimos modelos la bateria no es requerida, la bateria era utilizada por los primeros modelos. Estas memorias son resistentes a los rasguños(externos) y al polvo que han afectado a las formas previas de almacenamiento portátil, como los CD y los disquetes.
Es un pequeño dispositivo de almacenamiento que utiliza memoria flash para guardar la información que puede requerir o no baterías (pilas), en los ultimos modelos la bateria no es requerida, la bateria era utilizada por los primeros modelos. Estas memorias son resistentes a los rasguños(externos) y al polvo que han afectado a las formas previas de almacenamiento portátil, como los CD y los disquetes.
Unidades magneto-ópticas
Estas unidades son menos usadas en entornos domésticos que las unidades de CD-ROM, pero tienen varias ventajas:
Por una parte; admiten discos de gran capacidad: 230 MB, 640 Mb o 1,3 GB.
Además; son discos reescribibles, por lo que es interesante emplearlos, por ejemplo, para realizar copias de seguridad.
Estas unidades son menos usadas en entornos domésticos que las unidades de CD-ROM, pero tienen varias ventajas:
Por una parte; admiten discos de gran capacidad: 230 MB, 640 Mb o 1,3 GB.
Además; son discos reescribibles, por lo que es interesante emplearlos, por ejemplo, para realizar copias de seguridad.
Cables y Conectores
cables y conectores
DIFERENTES TIPOS DE CABLES Y CONECTORES QUE SUELE UTILIZAR UN PC.
La costumbre hace que cuando contestamos alguna pregunta relacionada con un PC digamos que compruebe tal o cual cable o que mire este o aquel conector, pero pocas veces nos paramos a pensar si la persona a la que estamos respondiendo conoce esos cables, cuales son, como son físicamente y para qué sirven.
Vamos a intentar en este tutorial darles un repaso a los principales, ordenándolos en lo posible por su uso.
Cables de datos:
Los principales cables (también llamados a veces fajas) utilizados para la transmisión de datos son:
Faja FDD o de disquetera:
Imágenes de dos tipos diferentes de cables FDD, uno plano y otro redondo.
Es el cable o faja que conecta la disquetera con la placa base.
Se trata de un cable de 34 hilos con dos o tres terminales de 34 pines. Uno de estos terminales se encuentra en un extremo, próximo a un cruce en los hilos. Este es el conector que va a la disquetera asignada como unidad A.
En el caso de tener tres conectores, el del centro sería para conectar una segunda disquetera asignada como unidad B.
El hilo 1 de suele marcar de un color diferente, debiendo este coincidir con el pin 1 del conector.
Faja IDE de 40 hilos:
Imagen de una faja IDE de 40 hilos.
Las fajas de 40 hilos son también llamadas Faja ATA 33/66, en referencia a la velocidad de transferencia que pueden soportar.
La longitud máxima no debe exceder los 46cm.
Al igual que en las fajas FDD, el hilo 1 se marca en color diferente, debiendo este coincidir con el pin 1 del conector.
Este tipo de faja no sirve para los discos IDE modernos, de 100Mbps o de 133Mbps, pero si se pueden utilizar tanto el lectoras como en regrabadoras de CD / DVD.
Faja IDE de 80 hilos:
Imágenes de dos tipos diferentes de cables IDE 80, uno plano y otro redondo.
Los cables IDE80, también llamados Faja ATA 100/133, son los utilizados para conectar dispositivos ATA - PATA a los puertos IDE de la placa base.
Son fajas de 80 hilos, pero con terminales de 40 contactos.
Esto se debe a que llevan 40 hilos de datos o tensión y 40 hilos de masa. Estos últimos tienen la finalidad de evitar interferencias entre los hilos de datos, por lo que permiten una mayor velocidad de transmisión.
A diferencia de las fajas de 40 hilos, en las que es indiferente el orden de conexión maestro / esclavo, en las fajas de 80 hilos estas deben estar en un orden establecido, estando este orden determinado por el color de los conectores, que suele ser:
Azul.- En un extremo, al IDE de la placa base.
Gris.- En el centro, al dispositivo esclavo.
Negro.- En el otro extremo, al dispositivo Master.
Estas fajas se pueden utilizar también sin problemas para conectar lectoras y regrabadoras de CD / DVD o en discos duros ATA 33 o ATA 66.
Al igual que en las fajas IDE 40, el hilo 1 se marca en color diferente, debiendo este coincidir con el pin 1 del conector.
La costumbre hace que cuando contestamos alguna pregunta relacionada con un PC digamos que compruebe tal o cual cable o que mire este o aquel conector, pero pocas veces nos paramos a pensar si la persona a la que estamos respondiendo conoce esos cables, cuales son, como son físicamente y para qué sirven.
Vamos a intentar en este tutorial darles un repaso a los principales, ordenándolos en lo posible por su uso.
Cables de datos:
Los principales cables (también llamados a veces fajas) utilizados para la transmisión de datos son:
Faja FDD o de disquetera:
Imágenes de dos tipos diferentes de cables FDD, uno plano y otro redondo.
Es el cable o faja que conecta la disquetera con la placa base.
Se trata de un cable de 34 hilos con dos o tres terminales de 34 pines. Uno de estos terminales se encuentra en un extremo, próximo a un cruce en los hilos. Este es el conector que va a la disquetera asignada como unidad A.
En el caso de tener tres conectores, el del centro sería para conectar una segunda disquetera asignada como unidad B.
El hilo 1 de suele marcar de un color diferente, debiendo este coincidir con el pin 1 del conector.
Faja IDE de 40 hilos:
Imagen de una faja IDE de 40 hilos.
Las fajas de 40 hilos son también llamadas Faja ATA 33/66, en referencia a la velocidad de transferencia que pueden soportar.
La longitud máxima no debe exceder los 46cm.
Al igual que en las fajas FDD, el hilo 1 se marca en color diferente, debiendo este coincidir con el pin 1 del conector.
Este tipo de faja no sirve para los discos IDE modernos, de 100Mbps o de 133Mbps, pero si se pueden utilizar tanto el lectoras como en regrabadoras de CD / DVD.
Faja IDE de 80 hilos:
Imágenes de dos tipos diferentes de cables IDE 80, uno plano y otro redondo.
Los cables IDE80, también llamados Faja ATA 100/133, son los utilizados para conectar dispositivos ATA - PATA a los puertos IDE de la placa base.
Son fajas de 80 hilos, pero con terminales de 40 contactos.
Esto se debe a que llevan 40 hilos de datos o tensión y 40 hilos de masa. Estos últimos tienen la finalidad de evitar interferencias entre los hilos de datos, por lo que permiten una mayor velocidad de transmisión.
A diferencia de las fajas de 40 hilos, en las que es indiferente el orden de conexión maestro / esclavo, en las fajas de 80 hilos estas deben estar en un orden establecido, estando este orden determinado por el color de los conectores, que suele ser:
Azul.- En un extremo, al IDE de la placa base.
Gris.- En el centro, al dispositivo esclavo.
Negro.- En el otro extremo, al dispositivo Master.
Estas fajas se pueden utilizar también sin problemas para conectar lectoras y regrabadoras de CD / DVD o en discos duros ATA 33 o ATA 66.
Al igual que en las fajas IDE 40, el hilo 1 se marca en color diferente, debiendo este coincidir con el pin 1 del conector.
Cable SATA:
En estas imágenes podemos ver un cable SATA y, en la de la derecha, los conectores en detalle.
Las unidades SATA (discos duros, regrabadoras de DVD...) utilizan un tipo específico de cable de datos.
Estos cables de datos están más protegidos que las fajas IDE y tienen bastantes menos contactos.
En concreto, se trata de conectores de 7 contactos, formados por dos pares apantallados y con una impedancia de 100 Ohmios y tres cables de masa (GND).
Los cables de masa corresponden a los contactos 1, 4 y 7, el par 2 y 3 corresponde a transmisión + y transmisión - y el par 5 y 6 a recepción - y recepción +.
Este tipo de cables soporta unas velocidades muchísimo más altas que los IDE (actualmente hasta 3Gbps en los SATA2), así como unas longitudes bastante mayores (de hasta 2 metros). Las conexiones SATA son conexiones punto a punto, por lo que necesitamos un cable por cada dispositivo.
Faja SCSI:
Cable o Faja SCSI III.
Este tipo de cable conecta varios dispositivos y los hay de diferentes tipos, dependiendo del tipo de SCSI que vayan a conectar.
SCSI-1.- Conector de 50 pines, 8 dispositivos max. y 6 metros max.
SCSI-2.- Conector de 50 pines, 8 dispositivos max. y 3 metros max.
SCSI-3 Ultra.- Conector de 50 pines, 8 dispositivos max. y 3 metros max.
SCSI-3 Ultra Wide.- Conector de 68 pines, 15 dispositivos max. y 1.5 metros max.
SCSI-3 Ultra 2.- Conector de 68 pines, 15 dispositivos max. y 12 metros max.
Cables USB:
Izquierda, cable USB. A la derecha, conectores tipo A y B.
Los cables USB son cada vez más utilizados en conexiones exteriores.
Se trata de cables de 4 contactos, distribuidos de la siguiente forma:
Contacto 1.- Tensión 5 voltios.
Contacto 2.- Datos -.
Contacto 3.- Datos +.
Contacto 4.- Masa (GND).
Dado que también transmiten tensión a los periféricos, es muy importante, sobre todo en las conexiones internas (a placa base mediante pines) seguir fielmente las indicaciones de conexión suministradas por el fabricante de la placa base, ya que un USB mal conectado puede causar graves averías, tanto en el periférico conectado como en la propia placa base.
Las conexiones USB soportan una distancia máxima de 5 metros, aunque con dispositivos amplificadores se puede superar esta distancia.
Los conectores estandarizados son el tipo A, utilizado sobre todo en las placas base y en los dispositivos tipo Hub, y el tipo B, utilizado en periféricos (impresoras, escáneres, discos externos...).
Existe otro conector estandarizado (hasta cierto punto), denominado Mini USB, que podemos ver en la imagen superior, utilizado por dispositivos USB de pequeño tamaño a multimedia (MP3, cámaras fotográficas y de vídeo, etc.).
Los conectores USB admiten hasta un máximo de 127 dispositivos.
Además de estos (que son los más habituales), no existe una reglamentación en cuanto a la estandarización de la forma y tamaño de este tipo de conectores, por lo que hay en el mercado cientos de tipos diferentes de conectores (sobre todo del tipo Mini), que en ocasiones solo sirven para una marca y modelo determinado.
Cables IEEE1394 (Firewire):
Imagen de unos conectores IEEE1394 de 6 contactos.
Se trata de una conexión de alta velocidad, ofreciendo una velocidad en su estándar Firewire 400 algo inferior a la teórica de un USB 2.0, pero en la práctica ofrece una mayor velocidad y, sobre todo, más estable en esta que la USB.
Además de una mayor estabilidad, también tiene un mayor voltaje en su salida de alimentación (hasta 25 - 30 voltios).
Hay dos tipos de conexiones IEEE 1394 dentro del estándar Firewire 400, los conectores de 4 contactos y de 6 contactos.
El esquema de un conector de 6 contactos sería el siguiente:
Conector 1.- Alimentación (hasta 25 - voltios).
Conector 2.- Masa (GND).
Conector 3.- Cable trenzado de señal B-.
Conector 4.- Cable trenzado de señal B+.
Conector 5.- Cable trenzado de señal A-.
Conector 6.- Cable trenzado de señal A+.
Este mismo esquema, pero para un conector de 4 contactos seria:
Conector 1.- Cable trenzado de señal B-.
Conector 2.- Cable trenzado de señal B+.
Conector 3.- Cable trenzado de señal A-.
Conector 4.- Cable trenzado de señal A+.
Como se puede ver, la principal diferencia entre uno y otro es que el conector de 4 contactos se utiliza en aquellos dispositivos que no tienen que alimentarse a través del puerto IEEE 1394.
Existe un segundo estándar Firewire, llamado Firewire 800.
Firewire 8000 (o IEEE 1394b) soporta una velocidad de transmisión de 800Mbps, el doble que el estándar Firewire 400.
Este tipo de Firewire utiliza un conector de 9 contactos, que sigue el siguiente esquema:
Conector 1.- Cable trenzado de señal B-.
Conector 2.- Cable trenzado de señal B+.
Conector 3.- Cable trenzado de señal A-.
Conector 4.- Cable trenzado de señal A+.
Conector 5.- Masa (GND) cables trenzados de señal A.
Conector 6.- Masa (GND) alimentación.
Conector 7.- Reservado (no se utiliza).
Conector 8.- Alimentación (hasta 25 - voltios).
Conector 9.- Masa cables trenzados de señal A.
Imagen de unos conectores IEEE1394 de 9 contactos.
En todos los casos, el número máximo de dispositivos conectados es de 63, con una distancia máxima de 4.5 metros
Una característica de los conectores Firewire es que son compatibles con Macintosh, pudiendo estar conectada una cámara o un escáner simultáneamente a un PC y a un Mac.
En estas imágenes podemos ver un cable SATA y, en la de la derecha, los conectores en detalle.
Las unidades SATA (discos duros, regrabadoras de DVD...) utilizan un tipo específico de cable de datos.
Estos cables de datos están más protegidos que las fajas IDE y tienen bastantes menos contactos.
En concreto, se trata de conectores de 7 contactos, formados por dos pares apantallados y con una impedancia de 100 Ohmios y tres cables de masa (GND).
Los cables de masa corresponden a los contactos 1, 4 y 7, el par 2 y 3 corresponde a transmisión + y transmisión - y el par 5 y 6 a recepción - y recepción +.
Este tipo de cables soporta unas velocidades muchísimo más altas que los IDE (actualmente hasta 3Gbps en los SATA2), así como unas longitudes bastante mayores (de hasta 2 metros). Las conexiones SATA son conexiones punto a punto, por lo que necesitamos un cable por cada dispositivo.
Faja SCSI:
Cable o Faja SCSI III.
Este tipo de cable conecta varios dispositivos y los hay de diferentes tipos, dependiendo del tipo de SCSI que vayan a conectar.
SCSI-1.- Conector de 50 pines, 8 dispositivos max. y 6 metros max.
SCSI-2.- Conector de 50 pines, 8 dispositivos max. y 3 metros max.
SCSI-3 Ultra.- Conector de 50 pines, 8 dispositivos max. y 3 metros max.
SCSI-3 Ultra Wide.- Conector de 68 pines, 15 dispositivos max. y 1.5 metros max.
SCSI-3 Ultra 2.- Conector de 68 pines, 15 dispositivos max. y 12 metros max.
Cables USB:
Izquierda, cable USB. A la derecha, conectores tipo A y B.
Los cables USB son cada vez más utilizados en conexiones exteriores.
Se trata de cables de 4 contactos, distribuidos de la siguiente forma:
Contacto 1.- Tensión 5 voltios.
Contacto 2.- Datos -.
Contacto 3.- Datos +.
Contacto 4.- Masa (GND).
Dado que también transmiten tensión a los periféricos, es muy importante, sobre todo en las conexiones internas (a placa base mediante pines) seguir fielmente las indicaciones de conexión suministradas por el fabricante de la placa base, ya que un USB mal conectado puede causar graves averías, tanto en el periférico conectado como en la propia placa base.
Las conexiones USB soportan una distancia máxima de 5 metros, aunque con dispositivos amplificadores se puede superar esta distancia.
Los conectores estandarizados son el tipo A, utilizado sobre todo en las placas base y en los dispositivos tipo Hub, y el tipo B, utilizado en periféricos (impresoras, escáneres, discos externos...).
Existe otro conector estandarizado (hasta cierto punto), denominado Mini USB, que podemos ver en la imagen superior, utilizado por dispositivos USB de pequeño tamaño a multimedia (MP3, cámaras fotográficas y de vídeo, etc.).
Los conectores USB admiten hasta un máximo de 127 dispositivos.
Además de estos (que son los más habituales), no existe una reglamentación en cuanto a la estandarización de la forma y tamaño de este tipo de conectores, por lo que hay en el mercado cientos de tipos diferentes de conectores (sobre todo del tipo Mini), que en ocasiones solo sirven para una marca y modelo determinado.
Cables IEEE1394 (Firewire):
Imagen de unos conectores IEEE1394 de 6 contactos.
Se trata de una conexión de alta velocidad, ofreciendo una velocidad en su estándar Firewire 400 algo inferior a la teórica de un USB 2.0, pero en la práctica ofrece una mayor velocidad y, sobre todo, más estable en esta que la USB.
Además de una mayor estabilidad, también tiene un mayor voltaje en su salida de alimentación (hasta 25 - 30 voltios).
Hay dos tipos de conexiones IEEE 1394 dentro del estándar Firewire 400, los conectores de 4 contactos y de 6 contactos.
El esquema de un conector de 6 contactos sería el siguiente:
Conector 1.- Alimentación (hasta 25 - voltios).
Conector 2.- Masa (GND).
Conector 3.- Cable trenzado de señal B-.
Conector 4.- Cable trenzado de señal B+.
Conector 5.- Cable trenzado de señal A-.
Conector 6.- Cable trenzado de señal A+.
Este mismo esquema, pero para un conector de 4 contactos seria:
Conector 1.- Cable trenzado de señal B-.
Conector 2.- Cable trenzado de señal B+.
Conector 3.- Cable trenzado de señal A-.
Conector 4.- Cable trenzado de señal A+.
Como se puede ver, la principal diferencia entre uno y otro es que el conector de 4 contactos se utiliza en aquellos dispositivos que no tienen que alimentarse a través del puerto IEEE 1394.
Existe un segundo estándar Firewire, llamado Firewire 800.
Firewire 8000 (o IEEE 1394b) soporta una velocidad de transmisión de 800Mbps, el doble que el estándar Firewire 400.
Este tipo de Firewire utiliza un conector de 9 contactos, que sigue el siguiente esquema:
Conector 1.- Cable trenzado de señal B-.
Conector 2.- Cable trenzado de señal B+.
Conector 3.- Cable trenzado de señal A-.
Conector 4.- Cable trenzado de señal A+.
Conector 5.- Masa (GND) cables trenzados de señal A.
Conector 6.- Masa (GND) alimentación.
Conector 7.- Reservado (no se utiliza).
Conector 8.- Alimentación (hasta 25 - voltios).
Conector 9.- Masa cables trenzados de señal A.
Imagen de unos conectores IEEE1394 de 9 contactos.
En todos los casos, el número máximo de dispositivos conectados es de 63, con una distancia máxima de 4.5 metros
Una característica de los conectores Firewire es que son compatibles con Macintosh, pudiendo estar conectada una cámara o un escáner simultáneamente a un PC y a un Mac.
Conectores
En informática, los conectores, normalmente denominados "conectores de entrada/salida" (o abreviado conectores E/S) son interfaces para conectar dispositivos mediante cables. Generalmente tienen un extremo macho con clavijas que sobresalen. Este enchufe debe insertarse en una parte hembra (también denominada socket), que incluye agujeros para acomodar las clavijas. Sin embargo, existen enchufes "hermafroditas" que pueden actuar como enchufes macho o hembra y se pueden insertar en cualquiera de los dos.
Disposición de las clavijas
Las clavijas y los orificios de los conectores están generalmente conectados a los hilos que forman el cable. La disposición de las clavijas describe cuáles son las clavijas que se emparejan con los hilos.
Cada clavija numerada generalmente se corresponde con un hilo dentro del cable, pero a veces una de las clavijas no se utiliza. Además, en algunos casos, dos clavijas se pueden conectar entre sí. Esto se denomina "puente".
Conectores de entrada/salida
La placa madre de un equipo tiene un cierto número de conectores de entrada/salida ubicados en el "panel trasero".
La mayoría de las placas madre tienen los siguientes conectores:
- Puerto de serie, que utiliza un conector DB9 para conectar dispositivos más antiguos,
- Puerto paralelo, que utiliza un conector DB25 para conectar principalmente impresoras antiguas,
- Puertos USB (1.1, baja velocidad, o 2.0, alta velocidad) para conectar periféricos más recientes,
- Conector RJ45 (denominado Puerto LAN o Puerto Ethernet) para conectar el equipo a una red. Interactúa con una tarjeta de red que se encuentra en la placa madre,
- Conector VGA (denominado SUB-D15), utilizado para conectar el monitor. Este conector interactúa con la tarjeta gráfica integrada,
- Enchufes hembra (Entrada de línea, Salida de línea y micrófono) para conectar altavoces, un sistema de sonido de alta fidelidad o un micrófono. Este conector interactúa con la tarjeta de sonido integrada
Puertos de Conexion
Puertos de Conexión
En la informática, un puerto es una forma genérica de denominar a una interfaz a través de la cual los diferentes tipos de datos se pueden enviar y recibir. Dicha interfaz puede ser de tipo físico, o puede ser a nivel de software (por ejemplo, los puertos que permiten la transmisión de datos entre diferentes ordenadores) (ver más abajo para más detalles), en cuyo caso se usa frecuentemente el término puerto lógico.
Puerto lógico
Se denomina así a una zona, o localización, de la memoria de un ordenador que se asocia con un puerto físico o con un canal de comunicación, y que proporciona un espacio para el almacenamiento temporal de la información que se va a transferir entre la localización de memoria y el canal de comunicación.En el ámbito de Internet, un puerto es el valor que se usa, en el modelo de la capa de transporte, para distinguir entre las múltiples aplicaciones que se pueden conectar al mismo host, o puesto de trabajo.
PCI
Puertos PCI (Peripheral Component Interconnect) son ranuras de expansión de la placa madre de un ordenador en las que se pueden conectar tarjetas de sonido, de vídeo, de red, etc. El slot PCI se sigue usando hoy en día y podemos encontrar bastantes componentes (la mayoría) en el formato PCI. Dentro de los slots PCI está el PCI-Express. Los componentes que suelen estar disponibles en este tipo de slot son:
- Computadoras de televisión
- Controladoras RAID
- Tarjetas de red, inalámbricas, o no
- Tarjetas de sonido
PCI-Express
.
PCI-Express es un nuevo desarrollo del bus PCI que usa los conceptos de programación y los estándares de comunicación existentes, pero se basa en un sistema de comunicación serie mucho más rápido que PCI y AGP. Posee nuevas mejoras para la especificación PCIe 3.0 que incluye una cantidad de optimizaciones para aumentar la señal y la integridad de los datos, incluyendo control de transmisión y recepción de archivos, PLL improvements, recuperación de datos de reloj, y mejoras en los canales, lo que asegura la compatibilidad con las topolgías actuales.[5] (anteriormente conocido por las siglas 3GIO, 3rd Generation I/O), este sistema es apoyado, principalmente, por Intel, que empezó a desarrollar el estándar con el nombre de proyecto Arapahoe después de retirarse del sistema Infiniband. Tiene velocidad de transferencia de 16x (8GB/s) y se utiliza en tarjetas gráficas.Puertos de memoria
A estos puertos se conectan las tarjetas de memoria RAM. Los puertos de memoria son aquellos puertos, o bahías, donde se pueden insertar nuevas tarjetas de memoria, con la finalidad de extender la capacidad de la misma. Existen bahías que permiten diversas capacidades de almacenamiento que van desde los 256MB (megabytes) hasta 4GB (gigabytes). Conviene recordar que en la memoria RAM es de tipo volátil, es decir, si se apaga repentinamente el ordenador los datos almacenados en la misma se pierden. Dicha memoria está conectada con la CPU a través de buses de muy alta velocidad. De esta manera, los datos ahí almacenados se intercambian con el procesador a una velocidad unas 1000 veces más rápida que con el disco duro.Puertos inalámbricos
Las conexiones en este tipo de puertos se hacen sin necesidad de cables, a través de la conexión entre un emisor y un receptor, utilizando ondas electromagnéticas. Si la frecuencia de la onda, usada en la conexión, se encuentra en el espectro de infrarrojos se denomina puerto infrarrojo. Si la frecuencia usada en la conexión es la usual en las radio frecuencias entonces sería un puerto Bluetooth.La ventaja de esta última conexión es que el emisor y el receptor no tienen por qué estar orientados el uno con respecto al otro para que se establezca la conexión. Esto no ocurre con el puerto de infrarrojos. En este caso los dispositivos tienen que "verse" mutuamente, y no se debe interponer ningún objeto entre ambos ya que se interrumpiría la conexión.
Puerto USB
Un puerto USB permite conectar hasta 127 dispositivos y ya es un estándar en los ordenadores de última generación, que incluyen al menos cuatro puertos USB 3.0 en los más modernos, y algún USB 1.1 en los más anticuadosPero ¿qué otras ventajas ofrece este puerto? Es totalmente Plug and play, es decir, con sólo conectar el dispositivo (con el ordenador ya encendido), el dispositivo es reconocido e instalado de manera inmediata. Sólo es necesario que el Sistema Operativo lleve incluido el correspondiente controlador o driver. Presenta una alta velocidad de transferencia en comparación con otro tipo de puertos. USB 1.1 alcanza los 12 Mb/s y hasta los 480 Mb/s (60 MB/s) para USB 2.0, mientras un puerto serie o paralelo tiene una velocidad de transferencia inferior a 1 Mb/s. El puerto USB 2.0 es compatible con los dispositivos USB 1.1
A través del cable USB no sólo se transfieren datos; además es posible alimentar dispositivos externos. El consumo máximo de este controlador es de 2.5 Watts. Los dispositivos se pueden dividir en dispositivos de bajo consumo (hasta 100 mA) y dispositivos de alto consumo (hasta 500 mA). Para dispositivos que necesiten más de 500 mA será necesaria alimentación externa. Hay que tener en cuenta, además, que si se utiliza un concentrador y éste está alimentado, no será necesario realizar consumo del bus. Una de las limitaciones de este tipo de conexiones es que la longitud del cable no debe superar los 5 m y que éste debe cumplir las especificaciones del Standard USB iguales para la 1.1 y la 2.0
Fuente de poder
Fuente de Poder
La fuente de poder, por lo tanto, puede describirse como una fuente de tipo eléctrico
En concreto podemos determinar que existen dos tipos básicos de fuentes de poder. Una de ellas es la llamada AT (Advanced Technology), que tiene una mayor antigüedad pues data de la década de los años 80, y luego está la ATX (Advanced Technology Extended).
La primera de las citadas se instala en lo que es el gabinete del ordenador y su misión es transformar lo que es la corriente alterna que llega desde lo que es la línea eléctrica en corriente directa. No obstante, también tiene entre sus objetivos el proteger al sistema de las posibles subidas de voltaje o el suministrar a los dispositivos de aquel toda la cantidad de energía que necesiten para funcionar.
Además de fuente AT también es conocida como fuente analógica, fuente de alimentación AT o fuente de encendido mecánico. Su encendido mecánico y su seguridad son sus dos principales señas de identidad.
La ATX, por su parte, podemos decir que es la segunda generación de fuentes para ordenador y en concreto se diseñó para aquellos que estén dotados con microprocesador Intel Pentium MMX.
Las mismas funciones que su antecesora son las que desarrolla dicha fuente de poder que se caracteriza por ser de encendido digital, por contar con un interruptor que se dedica a evitar lo que es el consumo innecesario durante el estado de Stand By y también ofrece la posibilidad de ser perfectamente apto para lo que son los equipos que están dotados con microprocesadores más modernos.
Lee todo en: Definición de fuente de poder - Qué es, Significado y Concepto http://definicion.de/fuente-de-poder/#ixzz2TdZSpwqp
Ranuras o Buses
Ranuras o Buses
Una ranura de expansión (también llamada slot de expansión) es un elemento de la placa base de un computador que permite conectar a esta una tarjeta adicional o de expansión, la cual suele realizar funciones de control de dispositivos periféricos adicionales, tales como monitores, impresoras o unidades de disco. En las tarjetas madre del tipo LPX las ranuras de expansión no se encuentran sobre la placa sino en un conector especial denominado riser card.
Las ranuras están conectadas entre sí. Una computadora personal dispone generalmente de ocho unidades, aunque puede llegar hasta doce.
Tipos de ranuras
XT
Es una de las ranuras más antiguas y trabaja con una velocidad muy inferior a las ranuras modernas (8 bits) y a una frecuencia de 4,77 megahercios, ya que garantiza que los PC estén bien ubicados para su mejor funcionamiento; necesita ser revisados antes.ISA
Artículo principal: Industry Standard Architecture.
La ranura ISA es una ranura de expansión de 16 bits capaz de ofrecer hasta 16 MB/s a 8 megahercios. Los componentes diseñados para la ranura ISA eran muy grandes y fueron de las primeras ranuras en usarse en las computadoras personales. Hoy en día es una tecnología en desuso y ya no se fabrican placas madre con ranuras ISA. Estas ranuras se incluyeron hasta los primeros modelos del microprocesador Pentium III. Fue reemplazada en el año 2000 por la ranura PCI.VESA
Artículo principal: Video Electronics Standards Association.
En 1992 el comité VESA de la empresa NEC crea esta ranura para dar soporte a las nuevas placas de video. Es fácilmente identificable en la placa base debido a que consiste de un ISA con una extensión color marrón, trabaja a 4 bits y con una frecuencia que varia desde 33 a 40 megahercios. Tiene 22,3 centímetros de largo (ISA más la extensión) 1,4 de alto, 1,9 de ancho (ISA) y 0,8 de ancho (extensión).PCI
Peripheral Component Interconnect o PCI es un bus de ordenador estándar para conectar dispositivos periféricos directamente a su placa base. Estos dispositivos pueden ser circuitos integrados ajustados en ésta (los llamados "dispositivos planares" en la especificación PCI) o tarjetas de expansión que se ajustan en conectores. Es común en las computadoras personales, donde ha desplazado al ISA como bus estándar, pero también se emplea en otro tipo de ordenadores.
A diferencia de los buses ISA, el bus PCI permite la configuración dinámica de un dispositivo periférico. En el tiempo de arranque del sistema, las tarjetas PCI y el BIOS interactúan y negocian los recursos solicitados por la tarjeta PCI. Esto permite asignación de IRQs y direcciones del puerto por medio de un proceso dinámico diferente del bus ISA, donde las IRQs tienen que ser configuradas manualmente usando jumpers externos. Las últimas revisiones de ISA y el bus MCA de IBM ya incorporaban tecnologías que automatizaban todo el proceso de configuración de las tarjetas, pero el bus PCI demostró una mayor eficacia en tecnología plug and play. Aparte de esto, el bus PCI proporciona una descripción detallada de todos los dispositivos PCI conectados a través del espacio de configuración PCI.tarjeta de expancion
Tarjeta de Expansión
Las tarjetas de expansión son dispositivos con diversos circuitos integrados, y controladores que, insertadas en sus correspondientes ranuras de expansión, sirven para expandir las capacidades de un ordenador. Las tarjetas de expansión más comunes sirven para añadir memoria, controladoras de unidad de disco, controladoras de vídeo, puertos serie o paralelo y dispositivos de módem internos. Por lo general, se suelen utilizar indistintamente los términos «placa» y «tarjeta» para referirse a todas las tarjetas de expansión.
En la actualidad las tarjetas suelen ser de tipo PCI, PCI Express o AGP. Como ejemplo de tarjetas que ya no se utilizan tenemos la de tipo Bus ISA.
Gracias al avance en la tecnología USB y a la integración de audio, video o red en la placa base, hoy en día son menos imprescindibles para tener un PC completamente funcional.
El primer microordenador en ofrecer un bus de tarjeta tipo ranura fue el Altair 8800, desarrollado en 1974-1975. Inicialmente, las implementaciones de este bus eran de marca registrada (como Apple II y Macintosh), pero en 1982 fabricantes de computadoras basadas en el Intel 8080/Zilog Z80 que ejecutaban CP/M ya habían adoptado el estándar S-100. IBM lanzó el bus XT, con el primer IBM PC en 1981; se llamaba entonces el bus PC, ya que el IBM XT, que utilizaba el mismo bus (con una leve excepción) no se lanzó hasta 1983. XT (también denominado ISA de 8 bits) fue reemplazado por ISA (también denominado ISA de 16 bits), conocido originalmente como el bus AT, en 1984. El bus MCA de IBM, desarrollado para el PS/2 en 1987, competía con ISA, pero cayó en desgracia debido a la aceptación general de ISA de parte de la industria, y la licencia cerrada que IBM mantenía sobre el bus MCA. EISA, la versión extendida de 32 bits abogada por Compaq, era común en las placas base de los PC hasta 1997, cuando Microsoft lo declaró un «subsistema heredado» en el libro blanco industrial PC 97. VESA Local Bus, un bus de expansión al principio de los 1990 que estaba ligado intrínsecamente a la CPU 80486, se volvió obsoleto (además del procesador) cuando Intel lanzó la CPU Pentium en 1993.
Memorias RAM y ROM
Memoria RAM
Memoria ROM
La memoria de solo lectura, conocida también como ROM
(acrónimo en inglés de read-only memory), es un medio de almacenamiento
utilizado en ordenadores y dispositivos electrónicos, que permite sólo la
lectura de la información y no su escritura, independientemente de la presencia
o no de una fuente de energía.
Los datos almacenados en la ROM no se pueden modificar, o al
menos no de manera rápida o fácil. Se utiliza principalmente en su sentido más
estricto, se refiere sólo a máscara ROM -en inglés, MROM- (el más antiguo tipo
de estado sólido ROM), que se fabrica con los datos almacenados de forma
permanente y, por lo tanto, su contenido no puede ser modificado de ninguna
forma. Sin embargo, las ROM más modernas, como EPROM y Flash EEPROM,
efectivamente se pueden borrar y volver a programar varias veces, aun siendo
descritos como "memoria de sólo lectura" (ROM). La razón de que se
las continúe llamando así es que el proceso de reprogramación en general es
poco frecuente, relativamente lento y, a menudo, no se permite la escritura en
lugares aleatorios de la memoria. A pesar de la simplicidad de la ROM, los
dispositivos reprogramables son más flexibles y económicos, por lo cual las
antiguas máscaras ROM no se suelen encontrar en hardware.Procesadores
Procesadores
El microprocesador
(o simplemente procesador) es el
circuito integrado central y más complejo de un sistema informático;
a modo de ilustración, se le suele llamar por analogía el «cerebro» de un computador.
Es un circuito integrado conformado por millones de componentes
electrónicos. Constituye la unidad central de procesamiento (CPU)
de un PC catalogado como microcomputador.
Es el encargado de ejecutar los programas, desde el sistema
operativo hasta las aplicaciones de
usuario; sólo ejecuta instrucciones
programadas en lenguaje de bajo nivel,
realizando operaciones aritméticas y lógicas
simples, tales como sumar, restar, multiplicar, dividir,
las lógicas binarias y
accesos a memoria.
Esta unidad central de procesamiento está constituida,
esencialmente, por registros, una unidad
de control, una unidad aritmético lógica (ALU)
y una unidad de cálculo en coma flotante(conocida
antiguamente como «co-procesador matemático»).
El
microprocesador está conectado generalmente mediante un zócalo específico de la placa base de la computadora; normalmente para
su correcto y estable funcionamiento, se le incorpora un sistema de refrigeración que consta de un disipador
de calor fabricado
en algún material de alta conductividad
térmica, como cobre o aluminio, y de uno o más ventiladores que eliminan el exceso del calor
absorbido por el disipador. Entre el disipador y la cápsula del microprocesador
usualmente se coloca pasta térmica para mejorar la conductividad del
calor. Existen otros métodos más eficaces, como la refrigeración líquida o el uso de células peltier para refrigeración extrema, aunque
estas técnicas se utilizan casi exclusivamente para aplicaciones especiales,
tales como en las prácticas de overclocking.
La medición
del rendimiento de un microprocesador es una tarea compleja, dado que existen
diferentes tipos de "cargas" que pueden ser procesadas con diferente
efectividad por procesadores de la misma gama. Una métrica del rendimiento es
la frecuencia
de reloj que permite
comparar procesadores con núcleos de la misma familia, siendo este un
indicador muy limitado dada la gran variedad de diseños con los cuales se
comercializan los procesadores de una misma marca y referencia. Un sistema
informático de alto rendimiento puede estar equipado con varios
microprocesadores trabajando en paralelo, y un microprocesador puede, a su vez,
estar constituido por varios núcleos físicos o lógicos. Un núcleo físico
se refiere a una porción interna del microprocesador cuasi-independiente que
realiza todas las actividades de una CPU solitaria, un núcleo lógico es la simulación
de un núcleo físico a fin de repartir de manera más eficiente el procesamiento.
Existe una tendencia de integrar el mayor número de elementos dentro del propio
procesador, aumentando así la eficiencia energética y la miniaturización. Entre
los elementos integrados están las unidades de punto flotante, controladores de
la memoria RAM, controladores de buses y procesadores dedicados de
video.
Suscribirse a:
Entradas (Atom)